76 research outputs found

    Advances in Distributed Graph Filtering

    Full text link
    Graph filters are one of the core tools in graph signal processing. A central aspect of them is their direct distributed implementation. However, the filtering performance is often traded with distributed communication and computational savings. To improve this tradeoff, this work generalizes state-of-the-art distributed graph filters to filters where every node weights the signal of its neighbors with different values while keeping the aggregation operation linear. This new implementation, labeled as edge-variant graph filter, yields a significant reduction in terms of communication rounds while preserving the approximation accuracy. In addition, we characterize the subset of shift-invariant graph filters that can be described with edge-variant recursions. By using a low-dimensional parametrization the proposed graph filters provide insights in approximating linear operators through the succession and composition of local operators, i.e., fixed support matrices, which span applications beyond the field of graph signal processing. A set of numerical results shows the benefits of the edge-variant filters over current methods and illustrates their potential to a wider range of applications than graph filtering

    State-Space Network Topology Identification from Partial Observations

    Full text link
    In this work, we explore the state-space formulation of a network process to recover, from partial observations, the underlying network topology that drives its dynamics. To do so, we employ subspace techniques borrowed from system identification literature and extend them to the network topology identification problem. This approach provides a unified view of the traditional network control theory and signal processing on graphs. In addition, it provides theoretical guarantees for the recovery of the topological structure of a deterministic continuous-time linear dynamical system from input-output observations even though the input and state interaction networks might be different. The derived mathematical analysis is accompanied by an algorithm for identifying, from data, a network topology consistent with the dynamics of the system and conforms to the prior information about the underlying structure. The proposed algorithm relies on alternating projections and is provably convergent. Numerical results corroborate the theoretical findings and the applicability of the proposed algorithm.Comment: 13 pages, 3 appendix page

    Sampling and Reconstruction of Signals on Product Graphs

    Full text link
    In this paper, we consider the problem of subsampling and reconstruction of signals that reside on the vertices of a product graph, such as sensor network time series, genomic signals, or product ratings in a social network. Specifically, we leverage the product structure of the underlying domain and sample nodes from the graph factors. The proposed scheme is particularly useful for processing signals on large-scale product graphs. The sampling sets are designed using a low-complexity greedy algorithm and can be proven to be near-optimal. To illustrate the developed theory, numerical experiments based on real datasets are provided for sampling 3D dynamic point clouds and for active learning in recommender systems.Comment: 5 pages, 3 figure
    • …
    corecore